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This paper describes a numerical method for solving the Navier-Stokes equations for 
unsteady, incompressible, 3-dimensional flows using velocity-vorticity variables and irregular 
Cartesian grids. The method involves solving Cauchy-Riemann type equations for the velocity 
and transport-ditfusion equations for the vorticity whose solenoidal vorticity components are 
obtained by solving a Poisson equation for a suitably chosen scalar potential. The importance 
of boundary conditions is examined. The difference equations are solved by iterations in order 
to permit exploitation of parallel and vector computing methods. Numerical experiments 
contirm the second-order spatial and temporal accuracy of the method. z? 1989 Academic 

Press. Inc. 

I. INTRODUCTION 

During the past two decades, major advances have been reported about numeri- 
cal methods for solving the Navier-Stokes (N-S) equations for incompressible 
flows using techniques based on finite-difference methods (FDM) [ 11, finite- 
element methods (FEM) [2, 31, boundary element methods (BEM) [4, 51, spectral 

* Work supported under NASA Grant NAGl-530 and NASA Contract NASl-18107. 
‘Work supported under NASA Contract NASI-18240 to High Technology Corporation and under 

ONR Contract NO00 14-83-K-0422 while the author was a Visiting Associate at the California Institute 
of Technology. 

298 
0021-9991/89 $3.00 
Copyright c 1989 by Academic Press, Inc 
All rights of reproductmn in any form reserved. 



NAVIER-STOKES BY COMPACT SCHEME 299 

methods [S], or combinations of these [7]. In addition, grid free vortex methods 
[S] have also produced revealing results. 

This paper treats the velocity-vorticity formulation of the N-S equations for 
unsteady, 3-dimensional flows. In a previous paper [9], we reported on a finite dif- 
ference solution of this problem in two dimensions. There, the transport of vorticity 
was governed by a simple advection-diffusion equation, and the only non-zero 
component of vorticity was normal to the plane of motion (velocity field). The 
governing equation set was closed by using the incompressibility condition and the 
kinematic definition of the vorticity. (These two equations thus constitute a form of 
the Cauchy-Riemann equations.) In this paper we extend this approach to 
3-dimensional problems. As might be expected, additional complicating factors 
arise. 

The most obvious of these is the appearance of the vortex stretching term in the 
vorticity transport equation. This term serves as the redistribution mechanism 
between the three vorticity components. Another complicating factor, although 
more subtle, is the requirement that the vorticity field which appears in the discrete 
Cauchy-Riemann equations be solenoidal (in some discrete sense). This, of course, 
is not an issue for the differential equations since it is a consequence of the fact that 
the vorticity is the curl of the velocity. 

The idea of using a velocity-vorticity formulation itself is not new; however, the 
method of implementation presented in this paper and that presented previously 
[9] is unique in that we treat the Cauchy-Riemann equations directly as a system 
of first-order partial differential equations. In previous studies [l&13], the velocity 
field was obtained from Poisson equations for each of the velocity components. 
These were derived by taking the curl of the velocity and using the condition that 
the velocity is divergence free to eliminate the mixed derivatives. These results were 
for steady [lo] and unsteady [11-131 flows in both two [ 11-131 and three dimen- 
sions [IO]. The approach of solving the Cauchy-Riemann equations for the 
velocity field was also used in [ 141. The method of solution employed matrix-inver- 
sion techniques rather than the iterative methods used in the present study. Finally, 
in a recent application of the boundary element method [ 151, it was indicated that 
a “vorticity-velocity” approach was utilized; however, a vector potential was intro- 
duced and the resulting Poisson equations were solved. 

In the present study, the velocity field is obtained from the solution of the 
Cauchy-Riemann equations using a discrete scheme described in [16] in which 
the prescribed solenoidal vorticity field is first obtained by a discrete version of 
the Helmholtz decomposition theorem. The discrete approximation scheme for the 
vorticity transport equation is based upon methods used in [9], but modified so as 
to include the stretching term. These points are highlighted in the text and the 
details of the construction are presented in the Appendix. 

In Section II the differential formulation of the problem is presented and an 
overall iterative solution strategy is developed. This enables us to identify four 
underlying problems, the numerical solutions of which enable us to treat the global 
problem itself. Section III describes the numerical treatment of three of these 
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problems using an iteration method proposed by Kaczmarz [ 171 (see also [ 181). 
The 3-dimensional problem formulation is then completed by a discussion of 
boundary condition specifications (Section V). All numerical methods for the 
incompressible Navier-Stokes equations which require the calculation of boundary 
conditions for some of the variables in terms of computed values of the other 
variables can suffer a loss of accuracy at the boundary. Such methods include those 
based on the velocity-vorticity formulation as well as the velocity-pressure 
formulation. These issues, in the context of our method, are discussed in detail in 
Section V and numerical results for test problems designed to shed light on these 
issues are further discussed in Section VI. The two test problems of Section VI are 
steady stagnation flow [ 191 and unsteady vortex spinup [ZO]. The numerical 
results appear to validate our conclusion that the method yields second-order 
spatial and temporal accuracy. 

The numerical schemes used in this paper are based on a domain decomposition 
method in which the relationship between data and solution values in each cell are 
appropriately expressed by algebraic relations and are extended throughout the 
underlying domain by continuity requirements. We call this a compact scheme: it 
can be interpreted as a special type of (non-conforming) finite-element method. A 
useful property of such schemes is that they can be expressed by using simple finite- 
difference notations whenever uniform or non-uniform Cartesian grids are used, as 
are the cases treated here. In such cases, the consistency of the schemes with the 
differential equations, when they are written as a first-order system, is evident. 
Although we plan to treat problems which involve non-rectangular elements else- 
where, the method for treating both Cartesian and general elements is presented in 
the Appendix to this paper. Emphasis has been placed on using element-by-element 
iterative solution techniques which can apply to the general problem and which 
facilitate either vector or parallel computation. However, no attempt has been made 
to seek the type of efficiency which a production code would require. 

II. FORMULATION AND SOLUTION STRATEGY 

The Navier-Stokes equations describing the flow of a Newtonian incompressible 
fluid can be written as 

v.u=o (2.la) 

vxu=s (2.lb) 

rl + (u .V)& - (5 .V)u = vV2&, (2.lc) 

where u = u(x, t) and &=5(x, t) are the velocity and vorticity fields, respectively, 
x=(x’, x2, x3) is a point in R3, t is the time, and v is the kinematic viscosity. 
Equation (2.1 a) expresses the incompressibility condition, while (2.1 b) identifies 5 
as the vorticity. The vorticity transport equation, Eq. (2.lc), results from taking the 
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curl of the momentum equations. In addition, as a consequence of Eq. (2.lb), the 
vorticity field must also be solenoidal, 

V.(=O. (2.ld) 

We seek a solution in a domain D which satisfies the initial conditions 

u = ug, &=Vxu,, at t=O (2.2a), (2.2b) 

and the boundary conditions 

u=ur, i=(Vxu) I/- (2.3a), (2.3b) 

on the boundary r of D. The task is to develop a second-order spatially and 
temporally accurate numerical algorithm for the differential system described in 
Eqs. (2.1) through (2.3). We assume the solution exists and is unique for 0 < t < T. 
Problems with more general boundary conditions are discussed in Section V. 

First note that the equations have the semigroup property, i.e., if the solution at 
t = t, can be obtained from the initial conditions at t=O, then the solution at a 
later time t = T can be obtained using the solution at t = t, as initial data. Since it 
is assumed that the solution exists for 0 < t < T, it is only necessary to indicate a 
construction for an arbitrary subinterval. 

We shall next consider the possibility of constructing a solution of (2.1 k(2.3) in 
any time interval by an iteration process each step of which will only require the 
solution of a linear problem. In Section III we will then examine how each of these 
problems can, in turn, be solved numerically. 

SOLUTION METHOD. Consider the following iterative method for constructing a 
solution in any fixed time interval: Let I indicate an iteration index, I= 0, 1,2, . . . 
and suppose that 0’ is a solenoidal vector which is given at the start of the Ith step. 

P(i) Since 0’ is solenoidal, V . c’= 0. The Cauchy-Riemann system, 
Eqs. (2.la) and (2.lb), with 6 = p’, can be solved with the boundary conditions 
n . (u-u,)=0 on f, where n denotes a unit exterior normal vector. Call this 
solution u’. 

P(ii) Referring to Fig. 1, let D, indicate a small neighborhood of the bound- 
ary r. Construct II: such that u: = u’ in D -D, and is smoothly interpolated in D, 
so as to satisfy the boundary condition uf: = u= on IY (Recall that n . u = n . ur was 
the only boundary condition enforced on u’ in step P(i).) Using Eq. (2.3b) construct 
the vorticity boundary condition 

~>=~bno(Vx II:) IF. (2.4) 

P(iii) Solve 

(2.5a) 
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FIG. I. Simply connected domain D with boundary r and boundary strip D, 

with the initial condition 

&‘VXUor t=O (2Sb) 

and boundary conditions Eq. (2.4). Since u’ was determined in step P(i), this is a 
linear transport-diffusion equation for 5. Call the solution 6’. 

P(iv) The solution 5’ from step P(iii) need not be solenoidal, since the coef- 
ficient terms in (2Sa) involve a velocity field which, in step P(i), was determined 
by means of a solenoidal vector 0’ which, so far, is unrelated to 5’. However, the 
Helmholtz theorem allows us to project c’ into a solenoidal component and an 
irrotational component. We call this solenoidal component the Helmholtz 
projection of c’ and denote it by 0’. 

P(v) Setting 1 c I + 1, repeat the procedure. Assuming this describes a 
convergent process, denote the converged solution by u and c. 

It is not difficult to conclude that the solution pair (u, 6) formally satisfies the 
velocity-vorticity form of the Navier-Stokes equations given by Eq. (2.1) as well as 
the initial conditions Eq. (2.2). Also, c = &. However, it is more difficult to conclude 
that the boundary conditions (2.3) will be satisfied as well. By construction, the 
normal components of u’ 1 r and Us agree; moreover, from the definition of vorticity, 
Eq. (2.lb), it is evident that the normal component of 5’ 1 r is determined by the 
tangential components of uy without appeal to the extrapolation involving u: 
expressed in Eq. (2.4). Thus, Eq. (2.4) determines the tangential components of c iI. 
in terms of u, and the field ui. 

This outline indicates that, for a convergent process, the governing differential 
equations given in Eq. (2.1) will be satisfied as well as the initial conditions given 
in Eq. (2.2). In addition, the construction explicitly enforces the condition on the 
normal component of Us and implicitly enforces, through the conditions on L,-, the 
tangential components of u,. Numerical evidence indicates that this construction 
does yield a solution pair (u, L,) which also satisfies the boundary conditions (2.3). 
Nevertheless, it can be anticipated that the treatment of boundary conditions will 
be a sensitive issue; this topic will be discussed in Section V. The next sections will 
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describe numerical schemes for solving each of the problems identified by 
P(i)-P(iv). 

III. NUMERICAL SCHEMES 

In this section, the numerical schemes solving P(i), P(iii), P(iv) will be described. 
As presented in the description of the solution method, Eqs. (2.la, 2.1 b) are to be 
solved simultaneously as a Cauchy-Riemann-type system. In the remainder of the 
paper we refer to these as the velocity equations, since the system determines the 
velocity field in terms of a given solenoidal field. Obviously, Eq. (2Sa) corresponds 
to the vorticity transport equation (2.1~) and will be referred to as such, although, 
as indicated earlier, only its solenoidal component appears in the velocity 
equations. 

The numerical methods used to develop the solution of these component 
problems are described in detail in the Appendix and only the resulting schemes 
will be presented in this section. These schemes arise by partitioning the fundamen- 
tal domain D into volume elements, indicated by {e}, in each of which elementary 
approximate solutions of the differential equations are used to establish relation- 
ships between solution values on the faces of the element in the time interval. When 
Cartesian grids are employed, certain symmetries of the element allow conventional 
finite-difference notations to be used. In this case, the discrete problem can be 
formulated in a manner which makes its structural consistency with the Cartesian 
form of the differential equations obvious. 

A. Velocity Equations 

Given a solenoidal vector field [, the problem arising in P(i) is to solve 

div u = 0 (3.la) 

curl u = p (3.lb) 

in D with 

n~u=u.uy. (3.4 

Consider a volume element e shown in Fig. 2. By integrating div u = 0 over e and 
the normal component of 0 over the faces y E de, one obtains 

div, u = 0 

n .curl, u = n .<(y). 

(3.3a) 

(3.3b) 

e E D in which div, and curl, arise from the differential operators div and curl by 
using central divided difference operators in place of the differential operator. 
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FIG. 2. Cartesian element P, with faces y, edges G, and vertices u. 

Writing u = (u.,, u,,, u=), the discrete approximations to these equations are then 
given by (see Appendix for details) 

UP.“PZ~.X) + ~,bwz~,) + &hwyu,) =o (3.4a) 

6,(PzK) - &(P,,u,.) = L (3.4b) 

~A&~.) - S,(PL,U;) = e, (3.4c) 

&(PL,.U,.) - &(P.Y%) = L (3.4d) 

where p and 6 are the respective centered average and divided difference operators. 
The variables u involved in these expressions are associated with the vertices of the 
volume element and are called box variables. Equations (3.4) constitute the velocity 
equations which are to be solved subject to the boundary conditions, Eq. (3.2). In 
Fix and Rose [ 163, a least squares formulation of Eq. (3.3) was considered and 
Eq. (3.4) was shown to provide a second-order accurate solution of the velocity 
Eqs. (3.1) and (3.2) provided that the prescribed field < satisfies the discrete 
solenoidal condition div, c = 0 in each element e. 

B. Transport Equations 

Given a velocity field u’ satisfying Eqs. (3.1), the equations (2.5) governing the 
time evolution of the vorticity, i, are 

~,+(u’.V)~-(~.V)u’=vV2~ (3.5a) 

with initial conditions 

&)=Vxub, (3Sb) 

and boundary conditions 

L,=(Vxu’) IJ-. (3.k) 
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Concerning a time interval It - t,,,l c At/2 in which t, = m . At/2, m = 1, 3, . . . . we 
interpret the initial conditions (3.5b) as those which have been determined at time 
t, - At/2 from the previous time interval. Step P(iii) requires us to solve (3Sa) 
when, at each stage of the iteration cycle, a velocity field u’ has been determined 
by solving the velocity Eqs. (3.1). In this case (3.5) is a linear vector differential 
equation with variable coefficients. 

A numerical scheme for solving these equations is described in the Appendix. It 
involves freezing the coefficients in any volume element and then constructing a 
solution in the volume element which approximately satisfies the initial condition 
from the previous time level and satisfies boundary conditions which match values 
obtained either from neighboring elements or from prescribed boundary conditions 
when the element adjoins the boundary f. In each volume element, the simple 
transformation of the vorticity variable 

5=evCW-t,)h, (3.6) 

where 

b = V( u + uT)‘/2 (3.7) 

leads to a simple advection-diffusion transport equation for the transformed 
variable o, i.e., 

0, + (u’ . V)o = vv20. (3.8) 

Note that at t = t,, 5 and o are equal; therefore the specification of boundary 
conditions for c at t = t, also specifies o. Also, even though the components of o 
are uncoupled in the transport Eqs. (3.8), the coupling among the components of 
the vorticity 5 is retained from one time interval to the next through the application 
of Eq. (3.6). These points will be highlighted further as the numerical scheme and 
solver for Eq. (3.8) are presented. 

The difference scheme to solve (3.8) is most simply understood by writing (3.8) 
as a first-order system. Let 

9 = (4.n $w 9,); 

then (3.8) can be written 

(3.9a) 

9 = v grad w - u’ : o. (3.9b) 

Direct application and extension of the results in the Appendix (see Eqs. (B.43)), 
leads to the following compact scheme for the 3-dimensional advection-diffusion 
equations for 0: 
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c1= x, y, z, and 

cc? = 1-4d(cLd-’ PY., ox= A,K,ye;‘p,) 

8, = (pL,z4(,) h,v-’ 

&=th,’ 

u, = vzhG2, 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

h, = AX/~, etc.; p, is defined in Eq. (B.43d), and the operator notation is defined in 
the Appendix. As Eqs. (3.12) through (3.14) indicate, the scheme is parametized by 
cell Reynolds numbers, 8,) CFL numbers, (pL,z4h),IZ, and diffusion parameters, K, 
( = CFL number/cell-Reynolds number). 

These equations are used to calculate values of o at time levels t = t, and 
t=t m + ,,2 from data at t = t, ~ 1,2 and boundary conditions at t = t,. The values of 
& at corresponding times are obtained from an approximation to the exponential 
transformation (3.6) which is described below. 

We now address the problem of determining the discrete solenoidal component 
of the numerical field 4. 

C. Helmholtz Projection 

Consider the Helmholtz decomposition of the vorticity field 5 into a solenoidal 
part and an irrotational part, 

i=o+vx in D. (3.15) 

A Poisson equation for x is obtained by taking the divergence of Eq. (3.15). Let 
p = Vx, then 

v.p=v%=v.& in D (3.16a) 

which is solved with Neumann boundary conditions 

n.p=O on r (3.16b) 

so that 

n.(c-i)=O on r. (3.17) 

The discrete Helmholtz projection problem in P(iv) may be posed as follows: given 
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a vector field i(y) defined on the faces of an element, determine the normal 
components of a vector field p(y) on each face, such that (cf. Eq. (3.16)) 

div, p = div, c, eED (3.18a) 

n . PlYI- = 0, YrEK (3.18b) 

in which div, = (6,, 6,., 6,). If 

g(Y) = 5(Y) - P(Y) 

then c is a discrete solenoidal field since 

(3.19a) 

div, p = 0, eeD, (3.19b) 

while 

n (8~~) - Uyr)) = 0, Yl-El-. (3.19c) 

A method for determining p(y) .n is described in the Appendix. The compact 
approximation scheme for Eq. (3.16) is given by (cf. Eq. (B.9)) 

6, py + b?. P). + 6; P, = div, i (3.20a) 

P.Y P: = 6,x3 P.v P? = &x3 pzp,=6,x (3.20b), (3.2Oc), (3.20d) 

~r~-h2,6,p~;/2=~.,.~--.~6,,p~/2=~L;~-h~~;p,/2. (3.20e), (3.20f) 

An examination of Eqs. (3.20) reveals that these six equations relate the six average 
values of x on the faces y of an element with the six average values of the normal 
components of p on the faces. Thus, the discrete problem for V2x = div c on e is 
solvable; that is, the discrete values (a/&z) x(y) can be determined from the discrete 
values x(y), y E e. Note, also, that Eqs. (3.20a)-(3.20d) result directly from a finite 
volume treatment of the system form of (3.16a), i.e., div p=f; p=Vx and are 
consistent with the differential equations. Equations (3.20e), (3.20f) provide the 
additional relationships required to solve the discrete problem on e. As indicated in 
the Appendix, the solution satisfies a discrete energy estimate and converges with 
second-order accuracy to the solution of the Poisson equation. 

Finally, with a second-order accurate solution pair (x, p), the construction of a 
solenoidal vorticity field c can be obtained from 

n 4?i> = n. K(Y) - P(Y)), yse, eED (3.21) 

or, in component form, 

([.Y)! t Ij2,I.k = (c.r -Pv;)i+ 1/2,,.k 

t&h.,, 1/2,k = (i,.-P,.),,,+ 1/2,k 

(3.22a) 

(3.22b) 

(c=)i, j.k+ l/2 = (~;-Pz)i, j,k+ I/2. (3.22~) 
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This concludes our description of the numerical schemes which solve the 
problems identified in steps P(i), P(iii), P(iv) of the overall iteration method 
described in Section II. The next section will describe how each of these problems 
can be solved by a uniform iteration method. 

IV. SOLUTION METHODS FOR THE DISCRETE EQUATIONS 

We now describe methods used in solving the algebraic set of equations for the 
discrete forms of the velocity equations, the vorticity transport equations, and 
the Poisson equation. These will be discussed within the context of the five-step 
iteration procedure presented in Section II. 

A. Kaczmarz Algorithm 

The Kaczmarz method is an iteration method which is used to solve a system of 
m linear algebraic equations in n unknowns of the form 

aixT = b;, i = 1, 2, . . . . m, (4.1) 

where ai = (a,,, a,,, . . . . a,,,), x = (x,, x2, . . . . x,,), and aT is the transpose of a. We may 
suppose these equations have been normalized by the condition 

ai. a? = 1. (4.2) 

Defining 
ri(x) = a, . xT - bi, (4.3) 

the Kaczmarz algorithm solves the least squares problem 

1 rf(x) = min (4.4) 

as follows: given xf , set 

xF+‘~ = XL - cfakrk(xi), k = 1, 2, . . . . m, l=O, 1, . . . 
/+ 1 =x1 (4.5) 

XI m 

in which sl is a relaxation parameter. This scheme converges for 1 < IX< 2 with an 
asymptotic convergence rate which is typical of SOR schemes and is independent 
of the manner in which the equations have been ordered. Thus, the equations in the 
discrete schemes described in Section III may be solved element-by-element either 
singly or in groups. 

B. Solution Procedures 

A numerical solution of the discrete NavierrStokes equations is obtained by 
implementing the five-step solution procedure described in Section II using the 
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Kaczmarz method to solve each of the numerical schemes which were set forth in 
Section III. 

Step P(i) requires the solution of the discrete Cauchy-Riemann system Eqs. (3.4) 
for a velocity field u. A requisite for such a solution is that the prescribed numerical 
vorticity field 0 be solenoidal in the sense that div, 0 = 0 in each element. These 
equations are subject to the boundary conditions n . (u - u,-) = 0 on f. 

Step P(ii) requires specifying the vorticity boundary conditions on f. This 
involves a method which will be described in the next section. Using the resulting 
vorticity boundary conditions and the velocity field u obtained from step P(i), step 
P(iii) involves solving the appropriate vorticity transport equations for 6. 

The discrete advectivediffusion equations (3.1 Oa)-( 3.1Oc) for o together with 
the relationship between o and 6 given by Eq. (3.6) enable values cm-“2 to be 
determined from initial data cm- 3i2 and boundary data in the time strip 
It-f,+,) <At/2. Since 6”-‘I* provides initial data for the next time strip 
It- t,( d At/2, it is possible to relate the values 5” directly to r” ‘. The result, 
which applies in each element, can be written 

where 

exp(-b”z)M~o”‘=exp(+b”‘-‘z)M+o”‘~’, (4.6) 

M, = (P, f Sd,)> T = At/2, 

to which are adjoined Eq. (3.10~). The operators M, are evaluated using the 
expressions for P!O, 6,~ which are given in Eq. (3.10). Also, the approximation 
exp( br) 1: 1 + bz is used, which is consistent with the second-order accuracy of the 
overall scheme. Equations (4.6) and (3.10~) are solved for O* by the Kaczmarz 
algorithm using the boundary conditions imposed for t = t,. From Eq. (3.6) we see 
that c” = urn at t = t, so that the solution of Eqs. (4.6) and (3.10~) provides the dis- 
crete solution of (2.5a) at the t = t,. 

Finally, step P(iv) of the iteration cycle determines the discrete solenoidal 
component g of the solution 4 just calculated. This is accomplished by solving the 
discrete Poisson equation system (3.20) for x and then using Eq. (3.21) to obtain 0. 

Using the discrete values of 0 just obtained, steps P(i)-P(iv) are repeated until 
convergence (step P(v)). The result, at t = t,, is the solution pair of (urn, pm). The 
process is then repeated in the next time strip, using these values as starting 
approximations. 

It is of interest to point out the ease with which the algorithm, as now con- 
structed for the 3-dimensional case, degenerates to the 2-dimensional case. In the 
velocity equations, one component of the velocity is lost and two defining equations 
for the vorticity are dropped; since the Kaczmarz solver treats each equation 
separately throughout the domain D, it is obviously a simple matter to delete the 
appropriate component velocity and define the vorticity equations in the code. The 
situation is similar for treating the vorticity equations although more variables are 
dropped since gradients normal to the plane of flow are zero in the 2-dimensional 

581/X212-5 
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case. The remaining vorticity component is governed by a simple advection- 
diffusion equation for which no exponential transformation is needed and is 
discretely solenoidal so that the Helmholtz projection construction can be 
eliminated. 

V. BOUNDARY CONDITIONS 

In the original problem for the Navier-Stokes equations which was set forth in 
Section II, we assumed that the velocity was specified on the boundary of the 
computational domain (Eq. (2.3)). When, in addition, the normal derivatives of the 
velocity on th.e boundary have been determined (viz., by knowing the solution 
within the domain) then the values of the vorticity on the boundary can be 
determined, as indicated in Eq. (2.3). 

In describing a solution strategy (steps P(i)-P(v)), we introduced in step P(ii) an 
interpolation process by which the velocity field which was constructred in step P(i) 
could smoothly link its interior values in the domain to values which were 
prescribed on the boundary by (2.3). As a result, both the normal as well as 
tangential derivatives of this velocity field were available in order to construct the 
boundary values of the vorticity (Eq. (2.4)) which are necessary in order to solve 
the vorticity-transport equation in step P(iii). 

We can, of course, treat more general boundary conditions. The solution of the 
Cauchy-Riemann type equations described in step P(i) is possible when the value 
of a tangential component of the velocity is given on part of the boundary of the 
domain, and the normal component is given elsewhere. We can also replace certain 
velocity boundary conditions in Eq. (2.3) by vorticity conditions. For example, if 
the tangential components of the velocity were to be specified everywhere on a 
boundary, this would be equivalent to specifying the tangential derivatives of the 
velocity and thus the normal component of the vorticity. From this we may 
conclude that an appropriate set of three components taken from either velocity or 
vorticity boundary values also lead to a well-posed problem for the Navier-Stokes 
equations. This is of practical relevance, because it is often convenient to specify 
one or more components of the vorticity at inflow and/or outflow. However, not all 
of the components of cr can be prescribed. Indeed, if the vorticity on rigid no-slip 
boundaries were known a priori then, in many cases, there would be no need to 
carry out the calculation. This follows from the facts that (1) the boundary shear 
stress is proportional to the tangential component of the vorticity and (2) in many 
engineering applications the main objective of the calculation is to find the shear 
stress on the rigid no-slip boundaries. 

In order to apply this algorithm to realistic problems one must derive values of 
ir, the boundary value of the vorticity. This difficulty is not unique to the 
velocity-vorticity formulation of the incompressible Navier-Stokes equations. If 
one uses the velocity-pressure formulation it is necessary to derive boundary condi- 
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tions for the pressure. This is by no means a trivial problem; see, for example, the 
recent study of pressure boundary conditions by Orszag, Israeli, and Deville [24]. 

In Section III we described how each of the steps P(i), P(iii), and P(iv) could be 
implemented numerically. Here we shall describe the interpolation used in step 
P(ii). The Cauchy-Riemann problem requires, as the boundary condition, one and 
only one component of uI to be specified on the boundary, which, for simplicity, 
we take to be the normal component. In this case, the tangential components of the 
resulting solution, u will differ from the prescribed tangential components of uy. At 
a rigid boundary there will be a velocity “slip.” 

This velocity “slip” generates vorticity at the boundary. The effect of step P(ii) is 
to generate an amount of vorticity at r so that the tangential component of u is 
equal to the tangential component of uy. This requires that we evaluate the tangen- 
tial and normal derivatives of u on f. For a numerical construction the tangential 
derivatives of uy can be evaluated exactly because the velocity uy is given on r. The 
evaluation of the normal derivatives can be done with the use of an N point one- 
sided difference formula based on values of u interior to D. Similar considerations 
apply if one specifies a tangential component for the Cauchy-Riemann problem. 

To summarize: for P(i) one and only one component of II,- gives the boundary 
condition; for P(ii) we use an N point extrapolation formula to compute au/an on 
r and the exact values of the tangential derivatives. Thus we have the boundary 
condition for P(iii). Finally for P(iv) we require the normal component of r, which 
is given in terms of the known derivative of the tangential components of u on ZY 
This completes the specification of the boundary conditions for the method. 

It is clear that the boundary conditions for the velocity problem in P(i) and the 
Helmholtz projection in P(iv) can be determined exactly from the specification of 
uy. In contrast, the boundary conditions for the vorticity problem requires the use 
of an N point formula to evaluate au/an on r. 

The procedures used in P(i), P(iii), and P(iv) are second-order accurate. Thus we 
take N= 3 and use a three point difference formula to evaluate au/an on r with 
accuracy 0(/z*). This is only formally correct. If the velocity, u, is accurate to 0(/z*), 
the numerical first derivatives of u will only be accurate to, at best, O(h). This 
implies that the boundary conditions for the vorticity will be only accurate to O(h). 
Clearly, the use of a higher order formula (N> 3) to determine au/an will not 
improve the accuracy of the boundary conditions for & because the velocity field is 
only accurate to O(V). 

We conclude that this scheme yields boundary conditions for the vorticity which 
are O(h). This is not surprising and, in fact, can give a more accurate boundary 
condition for c than is sometimes obtained for the pressure from a “primitive” 
variable, u, P formulation. This is because calculation of either a normal or tangen- 
tial boundary condition for the pressure gradient requires the evaluation of the 
viscous terms in the momentum equation which requires the evaluation of second 
derivatives of u. Therefore, if the error in the computed value of u is 0(/r*), the 
computed value of the pressure gradient on r may be only accurate to 0( 1). 

The results of numerical experiments, given in the next section, will confirm the 
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fact that the velocity field u can be computed with second-order accuracy even 
though the vorticity boundary conditions are only first-order accurate. Given a 
desired level of accuracy of the vorticity solution we may choose a grid spacing, h, 
away from the boundaries with error E = 0(h2) and, near the boundaries, use a fine 
grid, h,, such that E = 0(/z,). Thus one can insure a uniform error. 

The problem associated with prescribing downstream boundary conditions are 
well known and a full discussion of these is beyond the scope of this paper. Here 
we simply remark that in our earlier treatment of 2-dimensional problems we found 
that a simple advection of vorticity at the downstream boundary proved successful. 

VI. RESULTS OF TEST PROBLEMS 

In this section we present results of calculations for two test problems; one, a 
3-dimensional steady flow, and the other, a 3-dimensional, time-dependent flow. In 
both cases, exact solutions in closed form of the Navier-Stokes equations for an 
incompressible fluid are known. These problems thus provide tests of the spatial 
and temporal accuracy of the algorithm. 

The first of these problems is Howarth’s [19] solution for the 3-dimensional, 
steady, stagnation point flow (our notation is slightly different from that of [ 191). 
In the Cartesian coordinate system (x’, x2, x3) with velocity components 
(u,, u2, u,), the (x1, x3) plane is an impenetrable wall upon which u=O. 

In the far field, as x2 --) 00, we have 

u -+ ~ClCWiLd~, - (1 - P)(x21Ll)~* + (P~~‘/L#31, (6.1) 

with U,, a velocity scale, L, a length scale, {Zj} unit vectors, and j a dimensionless 
parameter, 0 <b < 1. If fi = 0, we have the 2-dimensional stagnation point flow and 
if /? = 1 the flow is the axisymmetric stagnation point flow. 

We then nondimensionalize with velocity scale UO, length scale L,, time scale 
To = Lo/U,, and pressure scale P, = p U i, and p the density. Then define a 
Reynolds number R = U,L,/v, with v a kinematic viscosity, and let n = R”‘x’. It is 
now easy to show that, with the primes denoting differentiation, 

UI = x’f’(q), (6.2) 

u2= -R -‘~*Cf(rl) + Pg(v)l, (6.3) 

u3 = PX’S’CV)> (6.4) 

P = P, - ;[(.Y’y + /3(x3)‘] 

- R- ‘Cf’(v) + W(v) + t(f(v) + Mrl))‘l (6.5) 
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with P, a constant, is the exact solution of the Navier-Stokes equations which 
satisfies the boundary conditions. The functions {f(q), g(q)} are the solutions of 

with 

f “’ +ff” - (f’)2 + pgf” + 1 = 0, (6.6) 

g”’ + flgg” - /q g’)’ +fg” + fl = 0, (6.7) 

and 

f(0) =f’(O) = g(0) = g’(0) = 0 (6.8 1 

f'+g'+ 1 as q-+co. (6.9) 

It is trivial to compute the vorticity from the velocity. This solution describes the 
flow in the vicinity of the stagnation point of a nonaxisymmetric body. 

If /I # (0, l), this is a truly 3-dimensional flow which cannot be transformed to a 
2-dimensional flow by a rotation about the x2 axis because the projection of the 
velocity vector onto the (xl, x3) plane rotates as x2 is varied from 0 to co. In our 
calculations we have chosen b = i so that the flow is, in a sense, intermediate 
between a 2-dimensional and an axisymmetric flow. 

The computational domain was held fixed at 0 d x1 < 1, 0 < x3 < 1, and 0 < q Q 5, 
in dimensionless units. We have solved this problem with grids of (10)3, (20)3, and 
(30)3 cells using various boundary conditions. 

In the first experiment both the velocity and vorticity on the computational 
boundaries were computed from Eqs. (6.2), (6.3), and (6.4). This gives exact bound- 
ary conditions for u and &. In Table I we list the values of the L2 norms of the 
velocity, /u/I, and vorticity 111;11, the Lz norms of the errors lIE(u and llE(&)ll, and 
their rations for grids of (10)3, (20)3, and (30)3 cells. 

The results given in this table clearly show the second-order spatial accuracy of 
this algorithm when exact boundary conditions for u and 6 are used. The error in 
u decreases slightly faster and the error in 5 decreases slightly slower with the grid 
spacing. Overall we can say that the relative errors in u and c decrease as h2. 

In the second experiment we solved the same problem with the exact velocity 
boundary conditions and, partially, computed vorticity boundary conditions. To be 
specific, all of the tangential values of 5 on the boundary were determined using a 
three-point difference formula. Thus, as stated earlier, these components of c on the 
boundary are expected to be only accurate to O(h). The normal component of 5 on 
the boundary was obtained from the tangential derivatives of u. 

We list the values of the L2 norms of u, c, E(u), E(r) and their ratios in Table II. 
It is clear from this data that the accuracy of the computed velocity field has 
deteriorated slightly, but is still approximately second order accurate. The error in 
the vorticity is now, however, only first-order accurate. We have examined in detail 
the field of errors in &. The relative errors in 6 are maximum near the solid bound- 
ary, the (x1, x3) plane, and are very small elsewhere. But the (x1, x3) plane is 
precisely where the maximum value of 6 occur so that the overall error in the 
vorticity field is only first-order accurate, even though the velocity field is still 
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second-order accurate. In order to decrease the magnitude of the error in 5, it is 
necessary to use a line grid near the solid boundary. 

The second test problem which we have used is Rott’s [20] exact solution of the 
Navier-Stokes equations for the evolution of a time-dependent vortex. In 
appropriate dimensionless variables, the velocity and vorticity components in 
cylindrical coordinates (r, 8, z) are 

u, = -(2k2/Re)r, (6.10) 

ug= (k2R,r)-’ [l -exp( -k2r2/F(t))], (6.11) 

u, = (4k2/Re)z, (6.12) 

ii- = 0, (6.13) 

ie = 0, (6.14) 

(Ii = (2/F(t)) exp( -k2r2/F(t)). (6.15) 

Here k is a numerical constant (= 1.12), Re is a Reynolds number, R, is a Rossby 
number, and 

F(t) = 1 + b exp( - 4k*t/Re), (6.16) 

with b an arbitrary, real constant. 
This flow is axisymmetric and is the solution for a radial inflow, rotation about 

the z(x3) axis, and an accelerating axial flow. The vortex along the x3 axis spins up 
from t=O to t=co. 

Although this flow has axial symmetry, we solved for it in Cartesian coordinates. 
It is easy to rewrite the solution, (6.10) through (6.15), in Cartesian coordinates in 
order to compare the computed and exact solutions. The computational domain 
waschosen to bea box with -3.lGxlG3.1, -3.1~x2~3.1,0~x3~1.0.Thesize 
of the box in the (xi, x2) plane was chosen so that c3 would be very nearly zero at 
all times on these boundaries. We choose dx’ = Ax2 = 0.2, Ax3 = 0.1, so that there 
were 31 cells in the x’ and x2 directions and 10 cells in the x3 direction. Finally we 
chose b = 2.0, Re = 100.0, and R, = 0.7. The time evolution of the flow was then 
computed, with At = 0.2, and boundary conditions for both the velocity and 
vorticity obtained directly from Eqs. (6.10) to (6.16), for t = 0 to t = 20. A number 
of measures were used to determine the accuracy of the computed solution for the 
vortex spin up. 

Figure 3 is a plot of the time evolution of L2 norms of the divergence of the 
vorticity /IV .c[j and the enstrophy llJ.Ql, and the value of c3 at the center of the 
computational domain. We desire to have [IV. 511 small for all time. We can 
compute the exact values of 116 .&/I and of l3 at x’ =x2 = 0 and it is easy to show 
that the enstrophy norm varies in time as F(O)/&‘(t) and that c3(x1 =x2 =0)= 
2/F(t). 

From the results shown in Fig. 3, it is obvious that the divergence of the vorticity 
is essentially constant in time with a mean value of about 5 x 10P3. There are, of 
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1.6 - 

0 2 4 6 8 10 12 14 16 18 20 
t 

FIG. 3. The time variation of norm of the enstrophy, 116 .&/I, the x3 component of the vorticity at the 
center of the domain, [,(O, 0, 4, I), and the norm of the divergence of the vorticity, j[V &\I, for Rott’s 
exact solution of the Navier-Stokes equations for vortex spinup. The Reynolds number is 100 and the 
Rossby number is 0.7. The dashed lines are from the exact solution and the solid lines are the computed 
results from the output of the code. 

L 

FIG. 4. Projection of the velocity vectors onto the plane x3 = 0.5 at I = 20. The flow is the spinup of 
an axisymmetric vortex with Reynolds number of 100 and Rossby number of 0.7. The maximum value 
of the velocity in this plane is 0.615. The grid used in the calculation was 31 x 31 x 10 cells. 
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course, fluctuations in time which lie in the range 3 to 7 x 10m3. It is clear that the 
projection scheme preserves a divergence free vorticity field to within 0(/i’). The 
individual values of the vorticity, for example, c,(O, 0, $), as well as the norm of the 
enstrophy are both in excellent agreement with the exact solution. 

We also have plotted the projection of the velocity field onto the plane x3 = 0.5, 
as well as a contour map of c3 in this plane, for t = 20. These are shown in Figs. 4 
and 5. The velocity vectors shown in Fig. 4 are the projection of u onto the plane 
x3 = 0.5 within the computational domain at t = 20. Figure 5 is a contour map of 
i3 on the plane x3 = 0.5 at t= 20. The tick marks shown on the border of Fig. 5 
indicate the location of the computational grid (31 by 31 cells). An examination of 
these figures shows that the computed flow field is axisymmetric despite the use of 
a Cartesian grid in the calculations. But note that there is a very small left-right 
asymmetry in the velocity field in Fig. 4 and that the vortex has drifted very slightly 
to the left in Fig. 5. One might expect these very slight deviations from axial 
symmetry on a Cartesian grid. The results presented in these figures show that even 
an evolved flow field retains a second-order accuracy. 

Finally in Table III, we give values of the error norms for each of the components 
of the velocity and vorticity at selected times from t = 0 to t = 20. These errors are 
relative to the magnitudes of the appropriate variables. It is clear from the results 
presented here that the error norms are bounded as the flow evolves in time and 
are approximately second order. 

FIG. 5. A contour plot of 5s on the plane x3=0.5 at t =20. The flow is the spinup of an axisym- 
metric vortex with Reynolds number of 100 and Rossby number of 0.7. Contours have values of 0.0 to 
1.120 with an interval of 0.07. The maximum value of (, on this plane is 1.137. The tick marks on the 
border indicate the size of the grid cells used in the calculation. The grid used was 31 x 31 x 10 cells. 
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APPENDIX 

A. Approximation Schemes for div u = 0, curl u = [ 

Let the planes x = const describe a Cartesian grid in R3, and denote by e, a 
volume element with center at xl. Suppose that the fundamental domain D is the 
union of such elements. As Fig. 2 shows, each element e has faces y, edges g, and 
vertices u and we identify these by a point associated with each. In addition, lel, 1~1, 
101 denote the respective volume, area, and length such that, if 101 = O(h), then 
IyI = O(h*), and lel = O(h3). 

Consistent with this geometric construction, let u(e), u(y), and u(a) denote the 
average values of u on e, y, and g, respectively. The values u(u) associated with the 
vertices are sometimes called box-variables and are often useful for quadrature 
evaluations of u(e), u(y), and u(a). For simplicity of notation, these will also 
designate the quadrature evaluation of these average values in terms of box- 
variables. 

Referring to Fig. 2, consider the faces of an element ei,j,k, where the index i is 
associated with the x1 or x-axis, j is associated with the x2 or y-axis, and k is 
associated with the x3 or z-axis. The defining relations for the average and 
difference operators on the yik ,,z, + faces are 

PL”U(Yi,j,k) k C”(~i+~,2,j,k)+U(Yi~I/2,,.k)1/2 (A.1) 

dI”(Y,j,k) A C”(Yi+ 1/2,j,k)-U(Yi-~1/2.j,k)l/2~ (A.21 

the operators ,uLz, A, and p3, A, are similarly defined. The operators 6iu(yi,j,k) are 
determined by 

A; L hidi, i= 1,2, 3 (A.3) 

where h’= Axi/2. The defining relations for the average and difference operators 
relating sides and edges, and edges and vertices are similar. 

With these operator definitions in mind, we can construct approximation 
schemes for both div u = 0 and curl u = g as follows: 

First, define the volume average of div u over an element e as 

1 
div, u s m s div u de. (‘4.4) 

Gauss’s theorem evaluates div, u in terms of u(y). n on de, where n is the unit 
outward normal, i.e., 

1 
div, u A m P u . n d IyI de 

(A.5) 
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where y is the oriented area. By suitably arranging the order of summation and 
using Eqs. (A.2) and (A.3), Eq. (A.5) can be written as 

div.u=61ul(y)+62u,(y)+6,u,(y). (A.61 

Using box-variables to evaluate the average values on the right-hand side of 
Eq. (A.6), one obtains 

dive u = (d1w3ul + 62~l~3u2 + ~~cL~P~u~). (A.7) 

In a similar fashion, define the surface average of the normal component of curl u 
over a surface y as 

1 
n.curl,u=M y s n .curl, u d JyI. (A.81 

Stokes’ theorem evaluates n . curl, u in terms of u(a) . e on dy, where G is the unit 
tangent vector, i.e., 

n.curl,u=l E u(a).o. 
IYI 

(A.9) 
0 E d’/ 

For a Cartesian element the opposite edges cr* on a face y have equal lengths, and 
the associated unit tangent vectors have different signs. This allows one to rewrite 
the summation in Eq. (A.9) in terms of an operator acting on the edges. For 
example, the component on the xi-face is given by 

(n-curl, u) 1 i =&u,(a) - 6,uJa). (A.10) 

Using box-variables to evaluate the average values on the right-hand side of 
Eq. (A.lO), one obtains 

(n -1,~) I 1 = C%w3 - hw4. (A.11) 

With these defining relations, the general form for the (normal) vorticity com- 
ponents on the faces of an element e can be written as 

Wcurl, U) Ii=~jbkUk)-bk(Pjit(i) (i, j, k) (A.12) 

where (i, j, k) indicates an even permutation of (1, 2, 3). 
Using the definitions (A.7) and (A.12), Fix and Rose [16] have shown that the 

Cauchy-Riemann type equations described in P(i) in Section I can be solved by the 
least-squares solution of 

div, u = 0 in D (A.12) 

curl, u = 0 (A.13a) 

n.u=n.u, on r (A.13b) 

when div, 0 = 0. 
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B. Compact Schemes for Boundary and Initial-Boundary Value Problems 

The following discussion will outline the general development of the schemes that 
are used in Section III. These schemes will be seen to provide domain decomposi- 
tion extensions of conventional boundary integral and boundary element methods. 
As a result, both boundary value and initial-boundary value problems can be 
handled. 

Consider a vector function V having s components. A typical feature of boundary 
value problems for systems of elliptic equations involving V on a domain D is that 
s-s’ components of V on 8D are determined, by means of the solution operator 
on D, by s’ prescribed components of V on aD, s’ < s. We may call the s’ prescribed 
components the primary variables and the s-s’ components the complementary 
variables. In certain simple cases the relationship between these variables can be 
described by means of simple integral equations. 

By constructing an approximate solution operator on D it may be possible to 
determine the relationship between the primary and complementary variables at N 
points of interpolation on 8D. We may expect that these approximate values will 
converge, as N + co, to the solution values V,, under reasonable precautions about 
the construction. This is the basis of discrete boundary integral methods. 

Returning to the continuous problem on D, suppose D is partitioned into volume 
elements, D = {e}. With arbitrary values of the primary variables chosen on the 
boundary of each element (but consistent with the values prescribed on ae n 8D) we 
can solve the boundary value problem in each element; the solution will be identical 
to the solution values of the boundary value problem in D in corresponding volume 
elements if they both have the same values on the boundary of each element and, 
thus, is continuous across interelement boundaries. 

This suggests the following discrete :approximation method: In each element e 
choose the center point of each face y of e as an interpolation point and, using an 
appropriate solution operator in e, obtain the discrete boundary integral relation- 
ship between the primary and complementary variables at the interpolation points 
on the boundary of de. We call this a compact equation on the element. Next impose 
continuity conditions at the interpolation points in D and use values prescribed by 
the problem on D when the interpolation point lies on aD. Then, solve the resulting 
algebraic problem. This, in effect, provides a domain decomposition extension of 
boundary element methods. (In this construction one may incorporate the 
continuity conditions quite simply by identifying the left and right limits at an 
interpolation point by their common value.) 

We call this construction a compact scheme. It requires for its development only 
an element-by-element description of the discrete integral equations which relate the 
primary and complementary variables at the interpolation points on the boundary 
of each element e. As shown below, this idea may be applied to time dependent 
problems as well, (cf. [21, 22, 91). 

The weak-element method [23] implements this construction by using as an 
approximation basis a manifold of solutions of the differential equation (or an 

581/82/2-6 
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approximation to it) in each element. Necessarily, then, the compact scheme which 
results is consistent with the differential equation in each element. This construction 
also leads immediately to a discrete energy estimate which approximates that which 
applies to the differential equation on D. Thus the convergence of the scheme is 
assured and leads to second-order accurate results. 

We will now indicate how a simple Galerkin method can be used to obtain 
compact schemes for general volume elements. 

A Boundary Value Problem 

As an example, we will discuss the Poisson equation V2v =f: Consistent with 
earlier notations, let f(e) indicate the value at the center of e and u(y) the value at 
the interpolation point on a face y. Define the bilinear boundary operator B,(v, w) 

by 

so that Green’s theorem can be written 

B,(v, w)=j (wV*v-vV2w) d lel. 
e 

03.1) 

(B.2) 

If w is any solution of the homogeneous problem (V2w = 0) then 

B,(u, w)=j wfdlel k (w,fL. (B.3) e 

Second-order accurate quadrature approximations to Eqs. (B. 1) and (B.3) yield 

B:(v, w) = E avw W(Y) -g-- V(Y) 7 a44 IyI 
?cae 1 (B.4) 

(w, f)3 = w(e) f(e) I4 (B.5) 

Suppose e has 1 faces: let wi, i = 1,2, . . . . I denote, say, the first I harmonic polyno- 
mials (i.e., V’w, = 0). Compact equations on e are given by 

@(u, Wi) = (Wi, f)fy i = 1, 2, . . . . 1 u3.6) 

and provide an 0(h2) truncation error. 
These equations establish an algebraic relationship between the 1 values u(y) and 

aa(r)/an on the faces of &. The coefficients in the equation are determined by 
evaluating w,(y) Iy( and (aw,(y)/an) IyI on the faces, i= 1, 2, . . . . 1. For the Poisson 
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equation V*v =f, application of these ideas is more straightforward if it is written 
as the system, 

V.p=f (B.7a) 

p=vv. (B.7b) 

Then, in the case of a Cartesian grid, use of the functions 

w=(l,x,y,z,x~-~~,x~-2~) (B.8) 

in Eq. (B.6) leads to the compact equations 

~xL+~,P."+b%=f (B.9a) 

A PI = b4 Py Pv = 6,UY pzpz = 6;~ (B.9b), (B.~c), (B.9d) 

LV - th:~,p.x = p.vv - ;h.;&py = LV - :h%p,. (B.9e), (B.9f) 

In order to show the convergence of this scheme, it is possible to construct a 
discrete energy estimate. Recall that the weak-element method [23] constructs an 
approximate solution ve on each element as 

I 
v’= c civi + 8, (B.lO) 

i=l 

where t? is a particular solution of V*v = f(e). Equation (B.6) determines the 
coefficients by a Galerkin construction on each element. Since ve is a solution of 
V2up = f (e) on e, it satisfies the energy equation 

Using the second-order accurate quadrature formulas to evaluate 
terms, one can approximate Eq. (B.11) as 

1 v’(y) F IYI = (v*, f ), + j (I’W2) d 14. 
y E de e 

(B.ll) 

the integral 

(B.12) 

Recalling the continuity conditions imposed by the compact construction and 
summing over elements in D, we obtain 

IA = 1 {(v’,fL+~ (IVoe12) dlel}. (B.13) 
eaD P 

This is a discrete approximation to energy estimates for the solution in D, viz., 

$aD v g dbl =JD (of + IW*) dIeI. (B.14) 
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This discrete energy estimate, together with the obvious fact that the approximation 
uh is consistent with the differential equation, implies by standard arguments that 
the scheme converges and, in fact, with second-order accuracy. 

It is, of course, possible to extend these ideas to more general boundary value 
problems of the form Lo =f: For sufficiently small volume elements, L can be 
approximated by an operator with constant coefficients in each element, which we 
call L,. In this case Green’s theorem can be written as (cf. Eq. (B.2)) 

B,(u, w) = j (wL,o - vL,*w) d lej, (B.15) 
c 

where L,* is the adjoint of L,. Solutions of the adjoint equation L*w = 0, are easily 
generated in the form 

w = exp[a . x], (B.16) 

where a satisfies the characteristic polynomial equation Lf(a) = 0. The compact 
equations which result, 

B,(u, WI = (w f), (B.17) 

may now involve exponential factors. It is possible to avoid the use of exponentials 
by using polynomial solutions of L*w = 0 which can be generated by 

wi=& (expCa~x1) la=O, i=o, 1,2, . . ..j= 1,2, 3. (B.18) 

The weak-element construction just described is based upon using a projection 
on a manifold of solutions of the differential equation in each element. This same 
idea can be applied to time-dependent problems as well. 

Initial-Boundary Value Problems 

As an example, we will base our discussion on the diffusion equation 

v, = v2v, x~D,o<t<T (B.19a) 

with initial and boundary conditions 

4x9 0) = g(x ), 

dx,, t) = UAXI-1, 

t = 0, (B.19b) 

xy E ao. (B.19~) 

Recalling the discussion in Section II, it is sufficient to solve this problem in a time 
strip S”: 1 t - t,l <r; i.e., with initial data v(x, t,- ii2) and boundary data v on 
aD x S”, we seek to determine av(x,, t)/an on aD x S” as well as u(x, tm+ 1,2)r 
XED. 
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Introducing a domain decomposition D = {e f, we consider the same type of 
problem on each cylinder set e x S”. The general solution can be written as 

0(x, t; a) = J A(a) exp(a .x -/It) da, (B.20) 

where /I satisfies the dispersion relation 

B = M2, (B.21) 

and A(a) is determined from the initial and boundary conditions in e x S”. If e has 
1 faces, one can seek an approximate solution which interpolates to the initial and 
boundary conditions on the element in the form 

u(x, t) = 1 A(ui) exp(u, . x - flit). 
i=O 

(B.22) 

Once again, the relationship between the primary and complementary variables 
for the discrete problem can be determined by a Galerkin procedure using an 
appropriate form of Green’s theorem. Let w indicate a solution of the adjoint 
equation 

L*(w) = w, + v2w = 0. (B.23) 

The application of Green’s theorem to this problem leads to the relation (cf. (B.17)) 

f (w, u), = B,(u, w). (B.24) 

The approximation which results by interpolation is then (cf. Eq. (B.6)) 

f (w, u,: = @(u, w). (B.25) 

A time average of Eq. (B.25) on S” produces the equation 

d,(w, 0,: = B&F, Wrn), (B.26) 

where urn, wm indicate time averages over the strip S” and 

s,U(t,)=(u(t,+5)-u(t,-T))/Llt (B.27a) 

w(tm) = (u(tm + 7) + 4t,- ~))P. (B.27b) 

Once again, the choice of s’+ 1 solutions ui of the adjoint Eq. (B.23) will then 
determine the s’+ 1 complementary solution values at points of interpolation in 
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e x S” in terms of the s’ + 1 primary solution values. The results is a set of compact 
equations for the problem. Write (B.19a) as the first-order system 

v, = aplax 
p = avjax. 

(B.28) 

In this case, e, is the interval (x - xi1 < h. The discrete mixed initial value problem 
on e x S” can be stated as: given v(e, t,,_ i,*) as initial data and vm(xr), X,-E &, as 
boundary data, determine (i) &F’(x,-)/ax, x~E&, and (ii) v(e, t,+,,2). 

Three elementary polynomial solutions of the adjoint equation (B.23) are 

Wi A (WI), WI, WJ=(l, Xy t +X2/2), (B.29) 

where the origin is taken at the center of e x S”. The compact equations (B.26) then 
lead to 

6,v(e, t,) = @(urn, wy)/dx (B.30a) 

0 = B;(Vm, wyy/4x (B.30b) 

ptv(e, t,) = Bt(vm, wy)/dx. (B.30~) 

These simplify to 

6tv=&xP (B.31a) 

PL,P=6xv (B.31b) 

(B.31~) 

where we have suppressed the reference to e x S”. The compact scheme results by 
requiring that v and p be continuous across endpoints of the intervals interior to D, 
using prescribed values of v on CD. (Note that the space operators in (B.31) apply 
to the face values of (v, p) on the cylinder e x S”, while the time operators apply 
to the values of v on the upper and lower bases.) 

It is possible to obtain an energy estimate for the system described by Eq. (B.31). 
Multiply Eq. (B.31a) by ptv and use both Eqs. (B.31b), (B.31~); the resulting 
equation is 

~6,v2+(sxv)2+~(~xp)2=6x(vp). (B.32) 

Summing over the elements in D, the discrete energy estimate for the approxima- 
tion is 

;a 
P 

v2dx+C (s,l;)‘+; (6,p)2 dx=vp IXJ. 
c [ 1 (B.33) 
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This expression corresponds to that for the continuous problem 

Id -- 
i 2dt D 

u2dx+ 
i 
D (u,)‘dx=vp IaD. 

The compact equations (B.31) are obviously consistent with the differential 
equation and, in view of the discrete energy estimate (B.33), the Lax equivalence 
theorem implies the convergence of the compact scheme. This same argument holds 
in three dimensions using an arbitrary partition of the domain D, D = {e}. 

Finally, it is straightforward to extend these ideas to the advection-diffusion 
equation 

v, + V (av) = vV2v, (B.35) 

where a and v are coefficients, which in the context of the physical problems of this 
paper, are associated with the velocity and viscosity of a fluid, respectively. Once 
again, writing this as a first-order system yields the equations 

v,=v.p 

p=vVv-au. 

(B.36a) 

(B.36b) 

The corresponding adjoint equations are 

-w,=Vq+v-‘aq 

q = vvw. 

(B.37a) 

(B.37b) 

The resulting form of Green’s theorem is now 

& (w,~),=B,(L’,w)=$~~ (wp-q).ndy. (B.38) 

If, in the time-strip S”, the coefficient a in each element e is frozen as a = am, then 
the elementary solution of (B.37) is 

w = exp[a . x - Bt], (B.39a) 

where 

p=v lal’+a”.x (B.39b) 

and, again, the origin is taken as the centerpoint of e x S”. The discrete form of 
(B.37) is obtained by using appropriate interpolated values in the quadrature 
approximation to B, and taking the time average over Sm. 

The values cr=O, GL = -v -‘a”’ in (B.38) lead to steady-state solutions, while 
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X- a”t is a simple time-dependent polynomial solution. Thus the appropriate 
approximation basis for this simple advectiondiffusion equation is m 

wL=(wo, wl, w,)= 1,x-Pt, exp -a 
( [ I) . 

V 

The compact equations which result are 

where 

6,v = B:(v”‘, w;)/Ax 

-pL,amp,v = Bt(v”‘, wy)/Ax 

[(em))’ sinh em] 6,~ = Bt(vm, wy)/Ax, 

(B.41a) 

(B.41b) 

(B.41~) 

8” = a”h/v. (B.42) 

When Eqs. (B.41a) and (B.41~) are combined (using (B.30)), (B.41~) can be 
replaced by 

0= B:(P, (P-l sinh 8,-w:). (B.41d) 

Expanding the right-hand sides of Eqs. (B.41a), (B.41b), and (B.41d), one obtains 
the compact scheme 

(B.43a) 

(B.43b) 

(B.43~) 

where 

(B.43d) 

and 

c, = 1 - Axam(pxam)-’ p. (B.43e) 

The coefficient p given by (B.43d) controls the weighting given to upwind terms in 
the compact scheme. It can be consistently approximated by 

de) = e/3, loi<3 

= sgn 8, lel>3 
(B.44) 

whose use allows us to employ an exponential-type scheme without having, in fact, 
to calculate exponential terms. 
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The extension to three dimensions results by using the basis 

Wi=(l,X-ua,t,y-a,t,z-a,t,exp(-a,x/v), 

exp( -a2 Y/V), ev( -w/v)). 
(B.45) 
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